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Abstract

We show that recent results in [3] on risk bounds for regularized least-squares on
reproducing kernel Hilbert spaces can be straightforwardly extended to the vector-
valued regression setting. We first briefly introduce central concepts on operator-
valued kernels, then we show how risk bounds can be expressed in terms of a gen-
eralization of effective dimension.
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1 Introduction

This work presents an extension to multi-task learning of our recent results [3] on risk
estimates for regularized least-squares (RLS) with reproducing kernel Hilbert spaces
(RKHS). Recently various papers, [18], [1],[10],[8], have addressed the problem of
multi-task learning using kernel techniques. For instance [18] employs two kernels
one on the inputs and one on the outputs, in order to represent similarity measures
on the corresponding spaces. The underlying similarity measures are supposed to
capture some inherent regularity of the phenomenon under investigation and should
be chosen according to the available prior knowledge. On the contrary in [1] the prior
knowledge is coded by a single kernel on the space of input-output couples, and a
generalization of standard support vector machines is proposed. It was in [10], [8]
that for the first time in the learning theory literature it was pointed out that
particular scalar kernels defined on input-output couples can be profitably mapped
onto operator-valued kernels [2] defined on the input space.

It is well known [2] that the machinery of RKHS can be elegantly extended to cope
with vector-valued functions using operator-valued kernels, so one would expect
that kernels methods for single-task learning can be adapted to multi-task learning
in this extended RKHS framework. In fact we show that the risk bounds obtained
in [3] can be straightforwardly rephrased in this more general setting.

The paper is organized as follows. In sections 2 we recall very briefly the main
concepts of statistical learning theory with vector-valued outputs and define the
RLS algorithm in this framework. In section 3 we fix the notations extending the
familiar formalism of reproducing kernel Hilbert spaces to the operator-valued case.
We also introduce the assumptions on the hypothesis space and on the probability
measure from which the samples are drawn. Furthermore we prove some preliminary
results on the structure of RLS estimators and concentration of measure for vector
valued random variables. Finally in section 4 we prove the probabilistic upper bound
for the excess risk of RLS estimators using a generalized effective dimension.

2 Learning from examples

We first briefly introduce some basic concepts of statistical learning theory in the
regression setting for vector-valued outputs (for details see [16], [9], [13], [4], [10]
and references therein).
In the framework of learning from examples there are two sets of variables: the input
space X and the output space Y which we will assume to be a separable Hilbert
space. The relation between the input x ∈ X and the output y ∈ Y is described by
a probability distribution ρ(x, y) = ν(x)ρ(y|x) on X × Y , where ν is the marginal
distribution on X and ρ(·|x) is the conditional distribution of y given x ∈ X. The
distribution ρ is known only through a sample z = (x,y) = ((x1, y1), . . . , (x`, y`)),
called training set, drawn independently and identically distributed (i.i.d.) according
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to ρ. Given the sample z, the aim of learning theory is to find a function fz : X → Y
such that fz(x) is a good estimate of the output y when a new input x is given. The
function fz is called estimator and the map providing fz, for any training set z, is
called learning algorithm.

Given a function f : X → Y , the ability of f to describe the distribution ρ is
measured by its expected risk defined as

I[f ] =
∫

X×Y
‖f(x)− y‖Y

2 dρ(x, y),

and the regression function

fρ(x) =
∫

Y
y dρ(y|x),

is the minimizer of the expected risk over the space of all the measurable Y -valued
functions on X. In this sense fρ can be seen as the ideal estimator of the distribution
probability ρ. However, the regression function cannot be reconstructed exactly since
only a finite, possibly small, set of examples z is given.

To overcome this problem, in the framework of the regularized least squares algo-
rithm [17], [12], [4], [20], a Hilbert space H of real functions on X is fixed and the
estimator fz

λ is defined as the solution of the regularized least squares problem,

min
f∈H

{1
`

∑̀

i=1

‖f(xi)− yi‖Y
2 + λ‖f‖H}, (1)

where λ is a positive parameter to be chosen in order to ensure that the discrepancy.

I[fz
λ]− inf

f∈H
I[f ]

is small with hight probability. Since ρ is unknown, the above difference is studied
by means of a probabilistic bound B(λ, `, η), which is a function depending on the
regularization parameter λ, the number ` of examples and the confidence level 1−η,
such that

P
[
I[fz

λ]− inf
f∈H

I[f ] ≤ B(λ, `, η)
]
≥ 1− η.

In particular, the learning algorithm is consistent if it is possible to choose the
regularization parameter, as a function of the available data λ = λ(`, z), in such a
way that

lim
`→+∞

P
[
I[fz

λ(`,z)]− inf
f∈H

I[f ] ≥ ε

]
= 0, (2)

for every ε > 0. The above convergence in probability is usually called (weak) consis-
tency of the algorithm (see [5] for a discussion on the different kind of consistencies).
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3 Notations and preliminary results

In this section we state the notations, we set the main assumptions and we prove
some preliminary results.

We assume that the input space X is a Polish space and the output space Y is a
real separable Hilbert space. We let Z be the product space X×Y , which is a Polish
space too. The assumptions on X and Y will avoid measurability problems.
The space of bounded linear operators on Y with the uniform norm ‖·‖L(H) will be
denoted by L(Y ), and L2(Y ) will be the separable Hilbert space of Hilbert-Schmidt
operators on Y with scalar product

〈A, B〉L2(Y ) = Tr(B∗A)

and norm
‖A‖L2(Y ) =

√
Tr(A∗A) ≥ ‖A‖L(H),

where Tr denotes the trace and ∗ the adjoint (similar notation we use by replacing
Y with other Hilbert spaces).

We first discuss the assumptions on the space H.

Hypothesis 1 The space H is a separable Hilbert space with reproducing kernel

K : X ×X → L2(Y ) ⊂ L(Y )

such that

X ×X 3 (x, t) 7→ 〈K(x, t)v, w〉Y is measurable ∀v, w ∈ Y (3)
‖K(x, x)‖L2(Y ) ≤ κ ∀x ∈ X (4)

for some κ > 0.

We recall that H is a real Hilbert space of functions f : X → Y satisfying the
following reproducing property

f(x) = K∗
xf f ∈ H, x ∈ X, (5)

where Kx : Y → H is the bounded operator

Kxv = K(·, x)v v ∈ Y. (6)

and (5) gives
K∗

t Kx = K(t, x) ∈ L2(Y ) ∀x, t ∈ X. (7)

Moreover, given x ∈ X the operator

Tx = KxK∗
x ∈ L2(H), (8)
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is a positive Hilbert-Schmidt operator and (8) ensures

‖Tx‖L(H) ≤ ‖Tx‖L2(H) = ‖K(x, x)‖L2(Y ) ≤ κ. (9)

If Y = R, the space L2(Y ) reduces to R, Kx ∈ H, and K∗
xf = 〈f,Kx〉H, so that H is

the reproducing kernel Hilbert space with kernel K [2]. The theory can be extended
to vector valued functions [14]. In particular the space H is uniquely defined by its
kernel in the sense that, given a kernel K : X ×X → L(Y ) such that

〈K(x, t)v, w〉Y = 〈K(t, x)w, v〉Y
n∑

i=1

〈K(xi, xj)vj , vi〉Y ≥ 0

there is a unique Hilbert space of functions f : X → Y satisfying (5).

The assumption that the kernel K takes values in the Hilbert space L2(Y ) ⊂ L(Y )
simplifies the theory and is enough for our purposes.
The condition that H is separable, which is essential in the following, is not ensured
by the assumptions on the kernel K. However, if (3) is replaced by the stronger
condition

X ×X 3 (x, t) 7→ 〈K(x, t)v, w〉Y is continuous ∀v, w ∈ Y,

the fact that X and Y are separable imply that H is separable, too.
As shown by Proposition 2 below, (3) and (9) are the minimal requirement to ensure
that any f ∈ H has a finite expected risk for all probability measure satisfying (10).

Let now ρ be a probability measure on Z. By ρX we will denote the marginal
distribution of ρ on X and by ρ(·|x) the conditional distribution on Y given x ∈ X,
both existing since Z is a Polish space (see Teo 10.2.2 [6]). Let L2(Z, ρ, Y ) be the
Hilbert space of functions φ : Z → Y that are square-integrable with respect to ρ,
and denote by ‖·‖ρ and 〈·, ·〉ρ the corresponding norm and scalar product. Similar
notation we use for L2(X, ρX , Y ).
Since ρ is a a probability measure, L2(X, ρX , Y ) can be regarded as a closed subspace
of L2(Z, ρ, Y ) and the corresponding orthogonal projection Q is

(Qφ)(x) =
∫

Y
φ(x, y) dρ(y|x) φ ∈ L2(Z, ρ, Y ).

Finally, the expected risk with respect to ρ of a measurable function f : X → Y is

I[f ] =
∫

Z
‖f(x)− y‖Y

2 dρ(x, y).

We are now ready to state the hypothesis on ρ.

Hypothesis 2 The probability measure ρ on Z satisfies
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∫

Z
‖y‖Y

2 dρ(x, y) < +∞ (10)

Tr
(∫

X
Tx dρX(x)

)
< +∞, (11)

and there are fH ∈ H and M > 0 such that

I[fH] = inf
f∈H

I[f ] (12)

|y − fH(x)|2≤M a.s. (13)

If (10) is not satisfied, then I[f ] = +∞ for all f ∈ H and learning problem does not
make sense. If it holds I[f ] is finite for all f ∈ L2(X, ρX , Y ).
In general fH is not unique as an element of H, but two different solutions are equal
almost everywhere, see (17) below.
If the regression function

fρ =
∫

Y
y dρ(y|x) = Qy

belongs to H, clearly fH = fρ. However, in general the existence of fH is a weaker
condition than fρ ∈ H, for example, if H is finite dimensional fH always exists.
Proposition 1 will prove that the integral in (11) always converges to a positive
Hilbert-Schmidt operator T , see (15) below, so (11) states that T is in fact trace
class. Condition (11), (12) and (13) are needed to prove the upper bound (28).

We now study some mathematical properties of the expected risk and of the regu-
larized least square algorithm.
Let A : H → L2(Z, ρ, Y ) be the linear operator

(Af)(x, y) = K∗
xf ∀(x, y) ∈ Z.

Equation (5) implies that the action of A on an element f is simply

(Af)(x, y) = f(x),

that is, A is the canonical inclusion of H into L2(Z, ρ, Y ), where the variable y is
dumb and functions are identified ρ-almost everywhere. So A could be not injective
and H could be not closed in L2(Z, ρ, Y ), since ‖f‖H is different from ‖f‖ρ.
The main properties of the operator A are summarized in the following proposition.

Proposition 1 If H satisfies Hypothesis 1 and ρ is a probability measure, A is a
bounded operator from H into L2(Z, ρ, Y ), the adjoint A∗ : L2(Z, ρ, Y ) → H is

A∗φ =
∫

Z
Kx φ(x, y) dρ(x, y) =

∫

X
Kx (Qφ)(x) dρX(x), (14)

where the integral converges in H, and A∗A is the Hilbert-Schmidt operator on H

T =
∫

X
Tx dρX(x), (15)
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where the integral converges in L2(H), and

‖T‖L(H) ≤ ‖T‖L2(H) ≤ κ. (16)

PROOF. The proof is standard for Y = R and it can easily extended to the vector
case.
First we prove that any function f ∈ H is measurable and bounded. Since Y is
separable, it is enough to prove that the function

x 7→ 〈f(x), v〉Y = 〈f,Kxv〉H
is measurable for all v ∈ Y . If f = Ktw for some t ∈ X and w ∈ Y , the claim follows
by (7) and (3). Since (5) ensures that the set

{Ktw | t ∈ X, w ∈ Y }
is total in H, the measurability for arbitrary f follows by density. Finally, (9) gives

‖f(x)‖Y
2 = 〈Txf, f〉H ≤ ‖f‖H2‖Tx‖L(H) ≤ κ‖f‖H2.

Since ρ is a probability measure, then f ∈ L2(Z, ρ, Y ) and A is a linear operator
from H to L2(Z, ρ, Y ) with ‖Af‖ρ ≤

√
κ‖f‖H, so that A is bounded.

We now prove (14). Indeed, given φ ∈ L2(Z, ρ, Y ), (3) ensures that the function

(x, y) 7→ 〈Kxφ(x, y), f〉H = 〈φ(x, y), f(x)〉H
is measurable for all f ∈ H. Since H is separable, the map

Z 3 (x, y) 7→ Kxφ(x, y) ∈ H
is measurable as map taking values in H and (4) gives

‖Kxφ(x, y)‖H =
√
〈K∗

xKxφ(x, y), φ(x, y)〉Y ≤ √
κ‖φ(x, y)‖Y

for all (x, y) ∈ Z. Since ρ is finite, φ is in L1(Z, ρ, Y ) and, hence, (x, y) 7→ Kxφ(x, y)
is integrable, as a vector valued map. Finally, for all f ∈ H,

∫

Z
〈Kxφ(x, y), f〉H dρ(x, y) = 〈φ,Af〉ρ = 〈A∗φ, f〉H ,

so the first part of (14) holds and the second one is a consequence of the definition
of Q.
Reasoning as above, it follows that the map

X 3 x 7→ Tx ∈ L2(H)

is integrable as function taking values in L2(H). In particular, T ∈ L2(H) and (15)
is a consequence of (14). The bound (16) follows from (9).

The role of the operator A in the context of learning theory is clear observing that
for all f ∈ H

I[f ] = ‖Af − y‖ρ
2 ,

where y denotes both the variable and the function (x, y) 7→ y, which belongs to
L2(Z, ρ, Y ) by (10). So the following result holds.
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Proposition 2 If Hypotheses 1 and (10) hold, fH ∈ H is a minimizer of the ex-
pected risk I[·] if and only if it satisfies

TfH = A∗y. (17)

and
I[f ]− I[fH] = ‖A(f − fH)‖ρ

2 =
∥∥∥
√

T (f − fH)
∥∥∥
H

2
∀f ∈ H . (18)

Moreover, for λ > 0, a unique minimizer fλ of the regularized expected risk

I[f ] + λ‖f‖H2

exists and is given by

fλ = (T + λ)−1A∗y = (T + λ)−1TfH. (19)

PROOF. The result is well known in the framework of linear inverse problems [7]
and we report it for completeness. Since the expect risk is convex, fH is a minimizer
if and only if the derivative of I[f ] is zero, that is,

〈Af, AfH − y〉ρ = 0 ∀f ∈ H (20)

and (17) follows.
Given f ∈ H

I[f ]− I[fH] = ‖Af − y‖ρ
2 − ‖AfH − y‖ρ

2

= ‖A(f − fH)‖ρ
2 + 2〈A(f − fH), AfH − y〉ρ

= ‖A(f − fH)‖ρ
2

since the second term is zero due to (20). Let A = U
√

T be the polar decomposition.
Since U is a partial isometry from the closure of the range of

√
T onto the closure

of the range of A

‖A(f − fH)‖ρ =
∥∥∥
√

T (f − fH)
∥∥∥
H

.

Finally, (19) follows taking the derivative be equal to zero.

Clearly, A, T , fH and fλ depend on ρ and, if it is needed, we write explicitly this
dependence.
In particular, given z = (x,y) = ((x1, y1), . . . , (x`, y`)) ∈ Z`, consider the empirical
measure

ρz =
1
`

∑̀

i=1

δ(xi,yi) (ρz)X =
1
`

∑̀

i=1

δxi ,

where δ(x,y) is the Dirac measure at point (x, y) ∈ Z. Since ρz is finitely supported,
any element w ∈ L2(Z, ρz) is uniquely defined by ` vectors

wi = w(xi, yi) ∈ Y i = 1, . . . , `
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with the condition that wi = wj whenever (xi, yi) = (xj , yj) and the scalar product
becomes

〈
w,w′〉

L2(Z,ρz)
=

1
`

∑̀

i=1

〈
wi, w

′
i.
〉
Y

In the following we let Az = Aρz , Tx = TρzX
and fz

λ = fλ
ρz

.
Since ρz has a finite support, (10) reduces to the condition y ∈ L2(Z, ρz), which is
clearly satisfied, so Propositions 1 and 2 become

(Azf)i = K∗
xi

f = f(xi) ∀i = 1, . . . , ` (21)

Az
∗w =

1
`

∑̀

i=1

Kxiwi w ∈ L2(Z, ρz) (22)

Tx := Az
∗Az =

1
`

∑̀

i=1

Txi (23)

fλ
z = (Tx + λ)−1Az

∗y, (24)

where fz
λ is the unique minimizer of the regularized empirical error

1
`

∑̀

i=1

‖f(xi)− yi‖Y
2 + λ‖f‖H2.

The following technical lemma will be used in the proof of Theorem 5.

Lemma 3 If ρ satisfies (11), i.e. T is trace class, then Tx is trace class for ρX-
almost all x ∈ X.

PROOF. Let (ek)k≥1 be a basis of H. For all k ≥ 1 the functions

x 7→ 〈Txek, ek〉H
are positive and meausurable by (3) and

∫

X

n∑

k=1

〈Txek, ek〉H dρX(x) =
n∑

k=1

〈(∫

X
Tx dρX(x)

)
ek, ek

〉

H
≤ Tr(T ) < +∞.

Clearly
∑n

k=1 〈Txek, ek〉H convergences to TrTx, which is finite for almost all x ∈ X
by monotone convergence theorem.

Finally, we need the following probabilistic inequality due to [11].

Proposition 4 Let (Ω,F , P ) be a probability space and ξ be a random variable on
Ω taking value in a real separable Hilbert space K. Assume that there are two positive
constants H and σ such that

9



‖ξ(ω)‖K≤
H

2
a.s (25)

E[‖ξ‖2
K]≤ σ2. (26)

Let ` ∈ N and 0 < η < 1, then

P`

[
(ω1, . . . , ω`) ∈ Ω` |

∥∥∥∥∥
1
`

∑̀

i=1

ξ(ωi)− E[ξ]

∥∥∥∥∥
K
≤ 2

(
H

`
+

σ√
`

)
log

2
η

]
≥ 1− η.

(27)

PROOF. It is just a restatement of Th. 3.3.4 of [19] (see also [15]). Consider the
probability space (Ω`,F `, P `) and the set of independent random variables with
zero mean ξi(ω1, . . . , ω`) = ξ(ωi)−E[ξ] defined on Ω`. The fact that ξi are i.i.d and
conditions (25), (26) ensure that

‖ξi‖K≤H a.s

E[‖ξi‖2
K]≤ σ2,

so that, for all m ≥ 2 it holds

∑̀

i=1

E[‖ξi‖m
K ] ≤ 1

2
m!B2Hm−2,

with B2 = `σ2. So Th. 3.3.4 of [19] can be applied and it ensures

P

[
1
`

∥∥∥∥∥
∑̀

i=1

(ξ(zi)− E[ξ])

∥∥∥∥∥ ≥
xB

`

]
≤ 2 exp

(
− x2

2(1 + xHB−1)

)
.

for all x ≥ 0. Letting δ = xB
` , we get the equation

1
2
(
`δ

B
)2

1
1 + `δHB−2

=
`δ2σ−2

2(1 + δHσ−2)
= log

2
η
,

since B2 = `σ2. Defining t = δHσ−2

`σ2

2H2

t2

1 + t
= log

2
η
.

The inverse of the function t2

1+t is the function g(t) = 1
2(t +

√
t2 + 4t) so

∥∥∥∥∥
1
`

∑̀

i=1

ξ(zi)− E[ξ]

∥∥∥∥∥
K
≤ σ2

H
g

(
2H2

`σ2
log

2
η

)

with probability greater than 1− η. The thesis follows observing that g(t) ≤ t +
√

t

and 2 log 2
η ≥

√
2 log 2

η ≥ 1.
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4 Risk bound

The aim of this section is to give a probabilistic upper bound on the expect risk of the
solution given by the regularized least square algorithm. The bound depends on the
number of examples `, the regularization parameter and some a priori information
on the probability distribution ρ.

In the following, we assume that the space H and the probability distribution ρ
satisfy Hypotheses 1 and 2, we fix a parameter λ > 0 and we define

(1) the residual

A(λ) =
∥∥∥fλ − fH

∥∥∥
ρ

2
=

∥∥∥
√

T (fλ − fH)
∥∥∥
H

2
,

where T is given by (15), fλ by (19) and fH by (12);

(2) the reconstruction error

B(λ) =
∥∥∥fλ − fH

∥∥∥
H

2
;

(3) the effective dimension

N (λ) = Tr[(T + λ)−1T ],

where the trace is finite due to (11).

In the framework of learning A(λ) is called approximation error, whereas in the
framework of approximation theory

√
B(λ) is the approximation error. To avoid

confusion we follow the notation of inverse problems.

We are now ready to state our main result on the upper bound.

Theorem 5 Let z ∈ Z` be a training set drawn i.i.d according to ρ and fz
λ ∈ H the

corresponding estimator given by (24). With probability greater than 1−η, 0 < η < 1,

I[fz
λ]− I[fH] ≤ Cη

(
A(λ) +

κ2B(λ)
`2λ

+
κA(λ)

`λ
+

κM

`2λ
+

MN (λ)
`

)
(28)

provided that

` ≥ Cηκ

2λ
max(N (λ),

√
2/Cη) (29)

where Cη = 128 log2(8/η).

PROOF. We split the proof in several steps. Let λ, η and ` as in the statement of
the theorem.
Step 1: Given a training set z = (x,y) ∈ Z`, (18) gives

I[fz
λ]− I[fH] =

∥∥∥
√

T (fz
λ − fH)

∥∥∥
H

2
.
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As usual,
fz

λ − fH = (fz
λ − fλ) + (fλ − fH)

and (19), (24) give

fz
λ − fλ =

(
(Tx + λ)−1Az

∗y
)− (

(T + λ)−1A∗y
)

= (Tx + λ)−1
{
(Az

∗y −A∗y) + (T − Tx)(T + λ)−1A∗y
}

( Eq. (17) ) = (Tx + λ)−1
{

(Az
∗y − TxfH + TxfH − TfH) + (T − Tx)fλ

}

= (Tx + λ)−1 (Az
∗y − TxfH) + (Tx + λ)−1(T − Tx)(fλ − fH).

The inequality ‖f1 + f2 + f3‖H2 ≤ 3(‖f1‖H2 + ‖f2‖H2 + ‖f3‖H2) implies

I[fz
λ]− I[fH] ≤ 3 (A(λ) + S1(λ, z) + S2(λ, z)) (30)

where
S1(λ, z) =

∥∥∥
√

T (Tx + λ)−1 (Az
∗y − TxfH)

∥∥∥
H

2

S2(λ, z) =
∥∥∥
√

T (Tx + λ)−1(T − Tx)(fλ − fH)
∥∥∥
H

2
.

Step 2: probabilistic bound on S2(λ, z). Clearly

S2(λ, z) ≤
∥∥∥
√

T (Tx + λ)−1
∥∥∥

2

L(H)

∥∥∥(T − Tx)(fλ − fH)
∥∥∥
H

2
. (31)

Step 2.1: probabilistic bound on
∥∥∥
√

T (Tx + λ)−1
∥∥∥
L(H)

. Assume that

Θ(λ, z) =
∥∥(T + λ)−1(T − Tx)

∥∥
L(H)

≤ 1
2
, (32)

then the Neumann series gives

√
T (Tx + λ)−1 =

√
T (T + λ)−1(I − (T + λ)−1(T − Tx))−1

=
√

T (T + λ)−1
+∞∑

n=0

(
(T + λ)−1(T − Tx)

)n

so that

∥∥∥
√

T (Tx + λ)−1
∥∥∥
L(H)

≤
∥∥∥
√

T (T + λ)−1
∥∥∥
L(H)

+∞∑

n=0

∥∥(T + λ)−1(T − Tx)
∥∥n

L(H)

≤ 1
2
√

λ

1
1−Θ(λ, z)

,

where, by spectral theorem,
∥∥∥
√

T (T + λ)−1
∥∥∥
L(H)

≤ 1
2
√

λ
. Inequality (32) now gives

∥∥∥
√

T (Tx + λ)−1
∥∥∥
L(H)

≤ 1√
λ

. (33)

12



We claim that (29) implies (32) with probability greater than 1 − η. Indeed, let
ξ1 : X → L2(H) be the random variable

ξ1(x) = (T + λ)−1Tx.

Bound (9) and
∥∥(T + λ)−1

∥∥
L(H)

≤ 1
λ imply

‖ξ‖L2(H) ≤
∥∥(T + λ)−1

∥∥
L(H)

‖Tx‖L2(H) ≤
κ

λ
=

H1

2
.

Lemma 3 ensures that Tx is trace class for almost all x and the inequality

Tr(AB) ≤ ‖A‖L(H) TrB (34)

(A positive bounded operator, B positive trace class operator) implies

E[‖ξ1‖2
L2(H)] =

∫

X
Tr

(
Tx

(
T

1
2

x (T + λ)−2T
1
2

x

))
dρX(x)

≤
∫

X
‖Tx‖L(H) Tr

(
(T + λ)−2Tx

)
dρX(x)

( (9) )≤ κTr
(
(T + λ)−2T

)

= κTr
(
(T + λ)−1

(
(T + λ)−

1
2 T (T + λ)−

1
2

))

≤ κ
∥∥(T + λ)−1

∥∥
L(H)

Tr
(
(T + λ)−1T

)

≤ κ

λ
N (λ) = σ2

1.

Observing that

E[ξ1] = T (T + λ)−1 1
`

∑̀

i=1

ξ1(xi) = (T + λ)−1Tx,

Proposition 4 applied to ξ1 gives

∥∥(T + λ)−1Tx − T (T + λ)−1
∥∥
L2(H)

≤ 2 log(6/η)

(
2κ

λ`
+

√
κN (λ)

λ`

)

with probability greater than 1− η/3. Then for all ` ∈ N satisfying (29)

log(6/η)

(
2κ

λ`
+

√
κN (λ)

λ`

)
≤ 1

8
+

1
8
≤ 1

4

so that
Θ(λ, z) ≤ ∥∥(T + λ)−1Tx − T (T + λ)−1

∥∥
L2(H)

≤ 1
2

(35)

with probability greater than 1− η/3.
Step 2.2: probabilistic bound on

∥∥(T − Tx)(fλ − fH)
∥∥
L(H)

. Let ξ2 : X → H be the
random variable

ξ2(x) = Tx(fλ − fH)

13



Bound (9) and the definition of B(λ) give

‖ξ2(x)‖H ≤ ‖Tx‖L(H)

∥∥∥fλ − fH
∥∥∥
H
≤ κ

√
B(λ) =

H2

2
.

Since Tx is a positive operator

E[‖ξ2‖H2] =
∫

X

〈
TxT

1
2

x (fλ − fH), T
1
2

x (fλ − fH)
〉

H
dρX(x)

=
∫

X
‖Tx‖L(H)

〈
Tx(fλ − fH), fλ − fH

〉
H

dρX(x)

≤ κ
〈
T (fλ − fH), fλ − fH

〉
H

= κ
∥∥∥
√

T (fλ − fH)
∥∥∥
H

2

= κA(λ) = σ2
2.

Observing that

E[ξ2] = T (fλ − fH)
1
`

∑̀

i=1

ξ2(xi) = Tx(fλ − fH),

Proposition 4 applied to ξ2 gives

∥∥∥(T − Tx)(fλ − fH)
∥∥∥
H
≤ 2 log(6/η)

(
2κ

√
B(λ)
`

+

√
κA(λ)

`

)
. (36)

with probability greater than 1 − η/3. Replacing (33), (36) in (31), for all ` ∈ N
satisfying (29) it holds

S2(λ, z) ≤ 8 log2(6/η)
(

4κ2B(λ)
`2λ

+
κA(λ)

`λ

)
(37)

with probability greater than 1− 2η/3.
Step 3: probabilistic bound on S1(λ, z). Clearly

S1(λ, z) ≤
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
2

L(H)

∥∥∥(T + λ)−
1
2 (Az

∗y − TxfH)
∥∥∥
H

2
. (38)

Step 3.1: bound on
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
L(H)

. Clearly,

√
T (Tx + λ)−1(T + λ)

1
2 =

√
T (T + λ)−

1
2

{
I − (T + λ)−

1
2 (T − Tx)(T + λ)−

1
2

}−1
.

Spectral theorem ensures that
∥∥∥
√

T (T + λ)−
1
2

∥∥∥
L(H)

≤ 1 so, reasoning as in Step

2.1, ∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
L(H)

≤ 2 (39)
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provided that ∥∥∥(T + λ)−
1
2 (T − Tx)(T + λ)−

1
2

∥∥∥
L(H)

≤ 1
2
. (40)

If B = (T + λ)−
1
2 (T − Tx)(T + λ)−

1
2 , then

‖B‖2
L2(H) = Tr

(
(T + λ)−1(T − Tx)(T + λ)−1(T − Tx)

)

=
〈
(T + λ)−1(T − Tx),

(
(T + λ)−1(T − Tx)

)∗〉
L2(H)

≤ ∥∥(T + λ)−1(T − Tx)
∥∥
L2(H)

∥∥∥
(
(T + λ)−1(T − Tx)

)∗∥∥∥
L2(H)

=
∥∥(T + λ)−1(T − Tx)

∥∥2

L2(H)
,

and, for all ` ∈ N satisfying (29), (35) ensures that (40) holds with probability
1− 2η/3.
Step 3.2: bound on

∥∥∥(T + λ)−
1
2 (Az

∗y − TxfH)
∥∥∥
H

. Let ξ3 : X × Y → H be the
random variable

ξ3(x, y) = (T + λ)−
1
2 Kx (y − fH(x)) .

The definition of M and the polar decomposition of Kx =
√

TxUx, where Ux is a
partial isometry, give

‖ξ3(x, y)‖H ≤
∥∥∥(T + λ)−

1
2

∥∥∥
H
‖Kx‖L(Y,H)

√
M ≤

√
κM

λ
=

H3

2

almost surely. Let Px,y = 〈·, y − fH(x)〉Y (y−fH(x)) with ‖Px,y‖L(Y ) = ‖y − fH(x)‖Y
2 ≤

M , then

E[‖ξ3‖H2] =
∫

X×Y
Tr

(
K∗

x(T + λ)−1KxPx,y

)
dρX(x)

≤
∫

X
‖Px,y‖L(Y ) Tr

(
(T + λ)−1Tx

)
dρX(x)

≤M Tr[(T + λ)−1T ] = MN (λ) = σ2
3,

where (34) is used replacing H with Y . Equation (17) gives

E[ξ3] = (T + λ)−
1
2 (A∗y − TfH) = 0,

so Proposition 4 applied to ξ3 ensures

∥∥∥(T + λ)−
1
2 (Az

∗y − TxfH)
∥∥∥
H
≤ 2 log(6/η)

(
2
`

√
κM

λ
+

√
MN (λ)

`

)
(41)

with probability greater than 1− η/3. Replacing (39), (41) in (38)

S1(λ, z) ≤ 32 log2(6/η)
(

4κM

`2λ
+

MN (λ)
`

)
. (42)
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with probability greater than 1− η.
Replacing bounds (37), (42) in (30),

I[fz
λ]− I[fH] ≤ 3A(λ) + 8 log2(6/η)

(
4κ2B(λ)

`2λ
+

κA(λ)
`λ

+
16κM

`2λ
+

4MN (λ)
`

)

and (28) follows by bounding the numerical constants with 128.
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